If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+11(x)=82
We move all terms to the left:
x^2+11(x)-(82)=0
a = 1; b = 11; c = -82;
Δ = b2-4ac
Δ = 112-4·1·(-82)
Δ = 449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-\sqrt{449}}{2*1}=\frac{-11-\sqrt{449}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+\sqrt{449}}{2*1}=\frac{-11+\sqrt{449}}{2} $
| -5(4x+5)=-185 | | 9-2|x-3|=2 | | x+2/4=6 | | 2/3y-1/2=1/5y | | 12p-4=9p^2 | | 30=3(x-2) | | 24x-80=64÷x | | 54=2.9x | | 3y-2+1y=9 | | 1/3n-3/4=3/5 | | -6+10x=8 | | 2/3+n=3/4 | | 3(k-2)=-18 | | 10+x+10=8x | | 7x+22=50 | | 4(x-2)+3x=41 | | -7(k+4)=49 | | (t-3)^2=3 | | 2/5n+10=1/2(n+5) | | 4x-2+4=6 | | 6-3(7a-8)=114 | | 7(x+9)=6(x-3) | | -10b+5=135 | | -7r+21=-7(6+4r) | | 2/7x4/21=1/7 | | (t-3)2=3 | | (2n-4)(n-5)=0 | | 2(x+2)+1x=-5 | | 2/15w=1+1/10w | | -19-8k=3(5k-9) | | 5u+4-8u=13 | | 3y-2=y=9 |